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Alhussein L, Hosseini EA, Nguyen KP, Smith MA, Joiner WM.
Dissociating effects of error size, training duration, and amount of
adaptation on the ability to retain motor memories. J Neurophysiol
122: 2027–2042, 2019. First published September 4, 2019; doi:
10.1152/jn.00387.2018.—Extensive computational and neurobiologi-
cal work has focused on how the training schedule, i.e., the duration
and rate at which an environmental disturbance is presented, shapes
the formation of motor memories. If long-lasting benefits are to be
derived from motor training, however, retention of the performance
improvements gained during practice is essential. Thus a better
understanding of mechanisms that promote retention could lead to the
design of more effective training procedures. The few studies that
have investigated how retention depends on the training schedule have
suggested that the gradual exposure of a perturbation leads to im-
proved retention of motor memory compared with an abrupt exposure.
However, several of these previous studies showed small effects, and
although some controlled the training duration and others the level of
learning, none have controlled both. In the present study we disam-
biguated both of these effects from exposure rate by systematically
varying the duration of training, type of trained dynamics, and
exposure rate for these dynamics in human force-field adaptation.
After controlling for both training duration and the amount of learn-
ing, we found essentially identical retention when comparing gradual
and abrupt training for two different types of force-field dynamics. By
contrast, we found that retention was markedly higher for long-
duration compared with short-duration training for both types of
dynamics. These results demonstrate that the duration of training has
a far greater effect on the retention of motor memory than the
exposure rate during training. We show that a multirate learning
model provides a computational mechanism for these findings.

NEW & NOTEWORTHY Previous studies have suggested that a
gradual, incremental introduction of a novel environment is helpful
for improving retention. However, we used experimental and compu-
tational approaches to demonstrate that previously reported improve-
ments in retention associated with gradual introductions fail to persist
when other factors, including the duration of training and the degree
of initial learning, are accounted for.

error size; motor adaptation; retention; training schedule

INTRODUCTION

A critical focus of learning and memory research is the study
of how training schedules can be optimized to improve reten-
tion in cognitive or motor learning tasks (Bock et al. 2005;
Criscimagna-Hemminger and Shadmehr 2008; Schmidt and
Bjork 1992; Smolen et al. 2016; Yin and Kitazawa 2001). Two
key training schedule components include the training duration
(e.g., number of trials) and the rate at which a perturbation is
presented (e.g., exposure rate). Remarkably, the training sched-
ule has been found to alter both short-term and long-term
retention as well as interlimb transfer (Joiner and Smith 2008;
Joiner et al. 2013; Kagerer et al. 1997; Kluzik et al. 2008;
Malfait and Ostry 2004). This is in line with the idea that
neural representations of learned dynamics are fundamentally
influenced by the training schedule (Berniker and Kording
2008; Mandelblat-Cerf et al. 2011) and suggests that a greater
understanding of how the training schedule affects the reten-
tion of motor memories can improve training paradigms for
motor learning and rehabilitation.

A number of studies have attempted to manipulate training
schedules to promote greater learning, in service of improving
the efficacy of training paradigms. However, if long-lasting
benefits are to be derived from a training session, then design-
ing the training schedule to maximize retention should be the
ultimate goal. Typically, during training, the sudden introduc-
tion of a perturbation results in large initial motor errors, which
can drive fast initial learning. However, it has been suggested
that gradual training paradigms, which keep motor errors small
throughout training, result in greater retention of learning in a
range of sensorimotor learning paradigms (Criscimagna-Hem-
minger et al. 2010; Hatada et al. 2006; Huang and Shadmehr
2009; Ingram et al. 2000; Kagerer et al. 1997; Klassen et al.
2005; Kluzik et al. 2008; Michel et al. 2007; Wong and
Shelhamer 2011). Consequently, this idea has motivated stud-
ies to investigate how small error sizes may be harnessed to
improve motor training and rehabilitation (Buch et al. 2003;
Ingram et al. 2000). To date, however, the practical benefits to
be gained from gradual training schedules remain unclear. In
fact, the opposite approach, error augmentation, has even been
promoted, where magnified error feedback is provided so that
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error sizes are increased compared with unmagnified abrupt
training (Rozario et al. 2009; Wei et al. 2005).

Several hypotheses have been proposed to explain why
gradual training might lead to better retention compared with
abrupt training. One thought is based on the idea that because
participants are less aware of an environmental disturbance
when motor errors are kept small, the use of explicit strategies
is reduced and training seems more natural. Thus gradual
training would promote motor learning that is more purely
implicit, which might in turn promote better retention (Hatada
et al. 2006; Jakobson and Goodale 1989; Michel et al. 2007;
Wong and Shelhamer 2011). Another hypothesis is based on
the idea that motor adaptation is composed of slow and fast
learning processes that differentially respond to error signals
that drive learning (Smith et al. 2006). In line with the finding
that a slow learning process is primarily responsible for both
short-term and long-term retention (Joiner and Smith 2008;
Sing et al. 2009b), it has been suggested that gradual
training schedules lead to better retention by preferentially
engaging slow learning mechanisms (Criscimagna-Hem-
minger and Shadmehr 2008; Torres-Oviedo and Bastian
2012; Wong and Shelhamer 2011).

However, a close examination of the evidence supporting
the underlying hypothesis that gradual training leads to im-
proved retention reveals that the studies reporting this effect
have not been adequately controlled. Some of these studies
have controlled the duration of the training period before
retention is examined (Criscimagna-Hemminger et al. 2010;
Ingram et al. 2000; Kagerer et al. 1997), whereas others have
controlled the amount of learning achieved before retention
onset (Huang and Shadmehr 2009; Klassen et al. 2005). Un-
fortunately, no study to date has simultaneously controlled for
both. Thus, if the duration of training and the amount of
learning can have even partially independent effects on the
amount of retention, these studies would all be confounded by
one or the other. Using a force-field (FF) adaptation paradigm,
we studied the effect of exposure rate (abrupt versus gradual)
on retention while controlling for both the amount of learning
and duration of training. We accounted for the level of learning
in two different ways: 1) by normalizing out the effect of
differences in adaptation for our retention measures and 2) by
comparing conditions using subsets of participants for whom
adaptation levels could be precisely matched (�1%). Contrary
to previous reports, we find no effect of exposure rate, with
gradual and abrupt training schedules displaying essentially
identical retention patterns for two different perturbations. In
contrast, we demonstrate that long-duration training leads to
markedly increased retention compared with short-duration
training for both types of dynamics we studied. We then show
that a computational model of multirate learning can provide a
mechanistic explanation for these findings. Collectively, our
results reveal that training duration has a far greater impact on
retention than exposure rate.

METHODS

Participants. Sixty-six right-handed participants (29 women; aged
23.8 � 3.34 yr) without known neurological impairments were
recruited from the George Mason University community to participate
in the study. Forty-two participants performed the experiment with a
position-dependent FF (experiment 1), whereas 24 participants expe-
rienced a velocity-dependent FF (experiment 2). The sample sizes

used were specified in advance based on previous studies we have
performed. Participants in both experiments were divided into three
groups that each performed the experiment with a different training
schedule (training duration and rate of FF presentation). The study
protocol was approved by the George Mason University Institutional
Review Board, and all participants gave written informed consent.

Experimental design. The experimental task followed the design of
the standard FF adaptation paradigm (Shadmehr and Mussa-Ivaldi
1994). Participants were situated in front of a horizontal display and
used the dominant hand to grip the handle of a two-joint robotic
manipulandum (KINARM end-point laboratory; Fig. 1A), capable of
recording the position, velocity, and force exerted all at a sampling
rate of 1,000 Hz. The manipulandum is equipped with motors capable
of producing forces to be applied to the hand. The xy-position of the
hand was denoted by a cursor on the screen. Participants were asked
to rapidly move the cursor, 0.6 mm in diameter, from the start target
to the peripheral end target in a straight line. Moving in two target
directions, the end target of each movement was used as the starting
target for the subsequent movement (Fig. 1A). The targets, placed
along the midline, were spaced 10 cm apart. Participants were allotted
a range of 75–2,000 ms to initiate each movement after the appearance
of the end target; otherwise, the trial was repeated. Binary visual
feedback indicating the movement speed and duration was provided in
the form of a changing fill color for the end target. Movements with
a peak velocity between 0.25 and 0.35 m/s and durations shorter than
750 ms generated a green fill color as well as a pleasing bell sound to
signify a successful trial. Alternatively, movements with peak speeds
above or below this range produced end targets that filled with red or
yellow colors, respectively, and were not accompanied with auditory
feedback. Note that half the participants in each group experienced
robot-applied forces in the 270° movement direction and the other
half, in the 90° direction. Only movements in the given training
direction with a peak velocity between 0.2 and 0.4 m/s were used for
data analysis.

Three different types of trials were used throughout: null trials, FF
trials, and error-clamp (EC) trials (Fig. 1B). During null trials, the
robot motors were disabled and no external changes to the manipu-
landum were applied (movement of the handle was completely con-
trolled by the participant). In FF trials, the robot motors were used to
produce clockwise (CW) or counterclockwise (CCW) forces on the
manipulandum to perturb hand motion. Participants in experiment 1
were presented with a position-dependent FF (pFF), whereas partici-
pants in experiment 2 were presented with a velocity-dependent FF
(vFF). These FFs took the following form:

�Fx

Fy
� � cK · �0 �K

K 0 � · �x

y � � cB · �0 �B

B 0 � · � ẋ

ẏ �,

K � 45 N/m, B � 15 N · s/m (1)

In a vFF, cK � 0 and cB � �1, whereas in a pFF, cK � �1 and
cB � 0. Because the above matrices are antisymmetric (where a
matrix A � �AT), the force and position/velocity vectors were orthog-
onal at any given point during hand motion; this results in a curl FF
where the direction (CW or CCW) can be altered with a change in the
sign of c, where c � �1 indicates a CW FF. Note that both
experiments were balanced such that there was an equal number of
participants performing the task in each movement direction (90°
versus 270°) and FF direction (CW versus CCW). The values for the
stiffness and viscosity parameters (K and B, respectively) were chosen
to achieve relatively equal peak forces between a pFF and vFF (Sing
et al. 2009a).

During EC trials, the robot motors employ a spring (6,000 N/m)
and damper (150 N·s/m) system to inhibit lateral movements, obli-
gating participants to move directly toward the target. By minimizing
perpendicular displacement from a straight line toward the target,
lateral movement errors are effectively reduced to zero. By minimiz-
ing lateral errors, we could measure the lateral force patterns produced
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by participants for compensation of the FF independently of feedback
responses that might be driven by lateral errors (Scheidt et al. 2000;
Sing et al. 2009a, 2013).

Task. With the exception of the FF type and training schedule, all
participants completed the same general experimental paradigm. Par-
ticipants first performed four baseline blocks to ensure task comfort
and familiarity. The first two baseline blocks contained 80 trials each
and were entirely composed of null trials. The last two baseline blocks
contained 100 trials each, where 1 in 5 trials were EC trials and the
remaining trials were null trials. The EC trials were used to establish
a baseline for an estimate of how the learned force-compensation
patterns change throughout the experiment. Blocks were intermitted
with 1-min breaks. In both experiments, the baseline blocks were
followed by one of three training schedules (described below). The
same FF type (vFF or pFF) and direction (CW or CCW) remained
constant for each participant. The change in magnitude of the FF for
each training schedule is shown in Fig. 1C. EC trials were present in
the given training direction with a ratio of 5 FF:1 EC, and these trials
were used to measure the force compensation patterns a participant
had learned. Note that we refer to movements made in the direction
opposite of the training direction as return trials (e.g., movements
toward 90° when the training direction was 270°). During training and
retention, participants always experienced ECs on return trials. Fi-
nally, we refer to the epoch of the experiment after training as the

retention period. In this period we employed 120 consecutive EC trials
(60 in the training direction) to measure the retention of motor
memories acquired during the training period.

Training schedules. In abrupt short (AS) training, participants were
first presented with 15 null trials. As shown in Fig. 1C, left, the
magnitude of the force then changes from 0% to 100% of the
perturbation strength (between the 15th and 16th trial), which corre-
sponds to B � 15 N·s/m for vFFs and K � 45 N/m for pFFs. As in
previous studies (Joiner et al. 2013; Malfait and Ostry 2004), the
training duration, during which FFs were applied, spanned 15 trials.
These 30 trials were then followed by the retention period within the
same block. In the abrupt long (AL) training session (Fig. 1C, middle),
15 null trials were followed by a long training period consisting of 160
trials. The magnitude of the FF was also abruptly and fully introduced
between the 15th and 16th trial. Both the AS and AL FF progression
rates are thus modeled as a step input, one with a much shorter
duration (AS) than the other (AL). On the other hand, following
Malfait and Ostry (2004), the gradual long (GL) training schedule
(Fig. 1C, right) included 15 null trials followed by 160 training trials
where the force smoothly transitioned from 0% to 100% of its
maximum value during the first 145 trials after introduction (trial 16);
the FF then remained constant at the maximum level for an additional
15 trials. The values of B and K were changed in the following
nonlinear pattern for the GL training schedule:
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Fig. 1. Experimental setup and paradigm. A: participants grasped the handle of a robotic manipulandum (blue) to make rapid 10-cm, point-to-point reaching
movements to 1-cm circular targets in the 90° and 270° directions. B: 3 types of trials were employed. In null (no force) trials, used for task familiarization and
to establish a performance baseline, the robotic manipulandum produced no forces. In force-field (FF) trials, the robot manipulandum applied forces (blue arrows)
that were proportional in magnitude and perpendicular in direction to either the velocity (vFF) or position (pFF) of hand motion (black arrows). In error-clamp
trials, the manipulandum steered in a virtual channel directed toward the target to minimize lateral deviations (see METHODS). C: after an initial baseline period,
participants completed 1 of 3 training schedules (abrupt short, AS; abrupt long, AL; or gradual long, GL). These schedules varied in duration (short versus long)
or exposure rate (abrupt versus gradual). All 3 training schedules were followed by a retention period consisting of 60 consecutive error-clamp trials. wrt, With
respect to.
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�Q� � nx, (2)

where Q represents either the viscosity or stiffness FF gains (B and K),
n is the trial number during the first 145 training trials, and

x �
log�sB · 15 � sK · 45�

log�145�
, (3)

where sB � 1 and sK � 0 in a vFF, and sB � 0 and sK � 1 in a pFF.
This results in 1 N·s/m (vFF) or 1 N/m (pFF) when the force is first
introduced and 15 N·s/m or 45 N/m after the 145th trial. This ramp
function, based on the one used in Malfait and Ostry (2004), produced
the slightly nonlinear ramp illustrated in Fig. 1C. The rate of pertur-
bation increase early in the ramp, where perturbations were small, was
somewhat faster than the rate when perturbations were larger late in
the ramp. As in the AS training schedule, the AL and GL training
epochs were followed by the retention period.

Note that during the training period, adaptation was calculated over
a window that allowed us to fairly compare the three training sched-
ules. Based on the training duration of the AS training scheme (15
trials), the first three adaptation coefficient points during training for
all training schedules represent the same trial range, and a window
size of 15 trials was used afterward for the AL and GL training data.
Thus the mean and standard error values are plotted as a function of
the mean trial number within these different windows (Fig. 2, E and
H). During the retention period, however, the mean and standard error
are calculated over a two-trial window due to the increased frequency
of EC trials.

Quantitative metrics. We examined the lateral force profiles par-
ticipants generated during EC trials throughout the experiment be-
cause all applied forces were perpendicular to the target direction.
Because the error is reduced to near-zero levels during these trials, the
lateral forces measured represent the amount of adaptive compensa-
tion participants learned to produce to counteract expected perturba-
tions (see Fig. 2). A coefficient denoting the amount of adaptation
made to compensate for the external forces can thus be computed by
performing a linear regression of the lateral force profiles participants
make during EC trials onto the force profiles produced by the robot,
and then taking the slope of this regression. To move in a straight line,
the force produced by the robot represents the ideal amount partici-
pants should compensate for. Because the robot-produced force in FF
trials is proportional to the longitudinal hand position or velocity on a
given trial, and the position or velocity varies from trial to trial, the
amount of adaptation on a given EC trial was estimated by regressing
the measured lateral force profile onto the ideal force profile that
would be required for complete compensation on that specific trial.
Therefore, if the ideal and applied force profiles completely over-
lapped, the adaptation coefficient would be 1, a completely equal but
opposite force profile would result in a coefficient of �1, and no force
compensation would result in an adaptation coefficient of 0 (Joiner
and Smith 2008; Sing et al. 2009a; Smith et al. 2006). Note that
adaptation coefficients were based on a window extending �750 ms
centered on each movement’s peak speed point. Also note that the last
12 EC trials during the baseline period were used to calculate the
average baseline force pattern for each participant. The average
baseline force pattern was then subtracted from the forces participants
produced during the training and retention periods.

We were interested in determining how different perturbation
exposure rates used during training (gradual versus abrupt) influence
the retention of learning. A gradual exposure rate typically leads to
small motor errors throughout training, because the perturbation
strength is applied incrementally over many trials. However, an abrupt
exposure rate leads to relatively larger motor errors, because the
perturbation is suddenly introduced at full strength. Therefore, by
studying how abrupt and gradual training schedules influence reten-
tion, we can consequently determine how the size of error influences
retention. To ensure that gradual and abrupt training did in fact lead

to small and large error sizes, respectively, we compared the maximal
error sizes that were observed in AL and GL training. To assess error,
we defined two vectors: one between the start and end targets, and the
other between the start target and the hand position at the midpoint of
the movement (i.e., when longitudinal displacement reached 5 cm).
Errors were then calculated as the angle between these two vectors.

A key idea in this report is that it may be crucial to control both the
duration of training and the amount of adaptation when examining the
effect of exposure rate. Training duration was explicitly matched
between AL and GL groups by the experimental design. However, it
is not possible to precisely match adaptation levels in the experiment
design, and differences in adaptation levels could trivially lead to
differences in retention. For example, if the AL and GL groups
displayed different final adaptation levels, yet both groups retained
60% of their final adaptation levels, their raw retention values would
still be different. We thus employed two different methods (normal-
ized retention analysis and matched-adaptation subsetting) of control-
ling the effects of final adaptation when examining the differences in
the retention of adaptation between training schedules. The first
method, normalized retention analysis, entailed normalizing each
training schedule’s decay curve by the amount of final adaptation
achieved at the end of the training period. Thus retention was
expressed as a percentage of adaptation measured during the retention
period to the final adaptation level achieved at the end of training for
each specific training schedule, rather than as a raw retention value as
in previous studies. The second method, matched-adaptation subset-
ting, entailed the selection of subgroups of participants for each pair
of training schedules that we compared (AL versus GL, AL versus
AS, GL versus AS) that were matched within 1% for final adaptation
levels. Specifically, for each comparison, we selected the maximum
number of participants for which a match within 1% or better could be
found. This matching was performed separately for each pair of
training schedules in experiment 1 (pFF training) and experiment 2
(vFF training). In experiment 1, the AL and GL adaptation-matched
subgroups (n � 13 and n � 12, respectively) resulted in a 0.35%
difference in final adaptation. AL and AS adaptation-matched sub-
groups (n � 13 and n � 12, respectively) resulted in a 0.29%
difference, and GL and AS adaptation-matched subgroups (n � 12
and n � 11, respectively) resulted in a 0.31% difference. In experi-
ment 2, AL and GL adaptation-matched subgroups (n � 8 and n � 7,
respectively) resulted in a 0.90% difference in final adaptation. AL
and AS adaptation-matched subgroups (n � 4 and n � 6, respectively)
resulted in a 0.21% difference, and GL and AS adaptation-matched
subgroups (n � 4 and n � 5, respectively) resulted in a 0.09%
difference. Note that increasing the number of participants for sub-
groups with n � 4 participants to n � 5 participants still allows
adaptation to be matched within 2% and leads to a similar pattern of
results. Importantly, controlling for the level of final learning in this
manner provided a second, independent evaluation of the effects of
training schedule on retention.

We were interested in determining how the time constants associ-
ated with the decay of adaptation during the retention period were
influenced by the effects of training duration and exposure rate. To
estimate these time constants (Fig. 2, G and J, right), the entire set of
the retention period data was fitted with the following equation for
each participant:

�1 � �� · exp��
t

�� � � , (4)

where � corresponds to the exponential time constant for decay. This
procedure was performed separately for each training schedule within
both experiments and allowed us to generally compare the rate of
motor memory decay.

Two-state multirate learning model. To understand our experimen-
tal findings, we studied a two-state multirate learning model that we
implemented to predict the time course of retention for all three
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training schedules from the learning curves that were experimentally
measured during the training period (Fig. 3). We constructed one
model for the pFF environment and one for the vFF environment.
These two models are structurally identical, but their parameters
were fit on pFF and vFF data, respectively. In both cases, the model
parameters were fit to training period data combined across all
three training conditions (AS, AL, and GL). Thus the model fitting
procedure was blind to the experimentally measured retention data
so that each model could make a naive prediction about retention
for each training condition, allowing us to determine whether these
two-rate models would predict the same contrasting effects of
training duration and training schedule that we observed experi-
mentally. In this model, adaptation is composed of a slow and a
fast learning process. The slow learning process is not very
sensitive to error but retains information well, whereas the fast
learning process reacts strongly to error but has weak retention
(Smith et al. 2006). The model was implemented with the follow-
ing error equations and learning rules:

FF trials: e�n� � f�n� � x�n�
EC trials: f�n� � x�n� → e�n� � 0

where x(n) is motor output on trial n, f(n) is perturbation strength on
trial n, and e(n) is error on trial n, and

x1�n � 1� � Af · x1�n� � Bf · e�n�
x2�n � 1� � As · x2�n� � Bs · e�n�

Bf � Bs, As � Af, x�n� � x1�n� � x2�n�
where Af and As are retention factors for fast and slow processes, Bf

and Bs are learning rates for fast and slow processes, and x1(n) and
x2(n) are the individual fast and slow learning processes that contrib-
ute to the net motor output on trial n [x(n)].

Using a least-squares approach, the model parameters were esti-
mated separately for experiments 1 and 2. In each case, the average of
each group’s training period data was concatenated, and the model
was fitted onto the combined datasets. Thus the model predicted
retention, since it was blind to the retention period data. To statisti-
cally compare the predicted differences in retention levels between
AL, GL, and AS from the model, we made 1,000 estimates of the
pFF-based and vFF-based model parameters via bootstrap. We then
used these bootstrapped samples for estimates of the standard error of
the predicted early and late retention for each of the training schedules
(Fig. 3, D and E).

Previous studies have shown that the slow process is directly
responsible for both short-term and long-term retention (Joiner and
Smith 2008; Sing et al. 2009b). Therefore, we also used the two-state
model to characterize how exposure rate and training duration influ-
ence retention by using slow-process learning as a proxy. Specifically,
we simulated adaptation using three different exposure rates: an
abrupt condition where the perturbation is introduced suddenly, a
gradual condition where the perturbation is introduced linearly, and
another gradual condition where the perturbation is introduced loga-
rithmically (employed in the current study). The linear ramp was
included because it is a popular gradual ramping procedure used in
motor adaptation studies (Huang and Shadmehr 2009; Hussain and
Morton 2014; Klassen et al. 2005; Schlerf et al. 2012; Wang et al.
2011; Wong and Shelhamer 2011). In addition, we included a 15-trial
period at the end of both gradual training conditions in which the
perturbation was at its maximum value (i.e., hold period). We in-
cluded a hold period in our simulations so that they were consistent
with the gradual condition used in the experimental design. Also note
that a hold period was used in a vast majority of studies we are aware
of employing a gradual training schedule (Criscimagna-Hemminger et
al. 2010; Gibo et al. 2013; Huang and Shadmehr 2009; Joiner et al.
2013; Klassen et al. 2005; Kluzik et al. 2008; Malfait and Ostry 2004;
Wang et al. 2011; Wong and Shelhamer 2011). Therefore, the very

first training schedule simulated for the gradual conditions has a
16-trial training duration, whereas the first simulation for the abrupt
condition begins with a 1-trial training duration. In these simulations,
we calculated the fraction of total adaptation that is accounted for
solely by slow-process learning over a range of 5,000 trials; this
provided enough trials for all three exposure rates to elicit near-
steady-state slow-process contribution. Slow-process contribution
was subsequently normalized by the value found on the 5,000th trial
of the abrupt condition, allowing us to express each quantity as a
percentage of total contribution possible (Fig. 3, F and G). Note that
these simulations were performed for model parameters derived
separately from the pFF data set (Fig. 3F) and the vFF data set (Fig.
3G). The simulations demonstrate how different training schedules
lead to distinct patterns of slow-process contribution to total learning,
which may act as a proxy for differences in retention between the
training schedules.

Statistical analysis. To examine differences in the magnitude of
retention, we operationally defined an early and a late period during
the retention epoch of the experiments as the first (1–20) and last
(41–60) group of 20 EC trials in the measured movement direction.
We compared the retention found in each training schedule within
these periods and determined if statistically significant differences
were present. Note that the early and late periods during the training
epoch, however, were defined as the first and last 10% of training
trials in each training schedule to facilitate comparisons between them
(Fig. 2, A and C). When we compared the final adaptation levels and
the retention levels between the three training schedules, we used
ANOVAs and subsequently determined which training schedule was
significantly different with post hoc analysis. For example, two-tailed
t tests were used between the training schedule groups to compare the
final adaptation levels. We also used ANOVAs followed by t tests to
determine if significant differences were present between the time
constants associated with the decay of adaptation found in the reten-
tion period of each training schedule. Note however that the entire set
of retention period data was used to estimate the time constants. When
comparing a pair of training schedule groups in our matched-adapta-
tion analyses, we used two-tailed t tests. In all cases, the significance
level (alpha) was set to 0.05, and a Kolmogorov–Smirnov test was
performed to verify that the data were normally distributed.

RESULTS

We studied how two key features of the training schedule,
training duration and exposure rate, influence the retention of
motor memories. In particular, we compared retention of the
trained adaptation for the three different training schedules
—abrupt long (AL), gradual long (GL), and abrupt short (AS)—
so that we could examine the specific effects of exposure rate
(AL versus GL) and training duration (AL versus AS). We
made these comparisons in two different force-field (FF) ad-
aptation paradigms, one based on a position-dependent FF
(pFF) and one based on a velocity-dependent FF (vFF), to
determine whether the findings would be consistent for differ-
ent physical dynamics. Critically, we exerted control over both
the training duration and the amount of learning before reten-
tion was assessed. The experimental design allowed us to
match the training duration across conditions, and the analyt-
ical methods allowed us to match the final level of learning
across conditions. Specifically, we accounted for the final level
of learning in two different ways to analyze retention: 1)
normalizing out differences in adaptation and 2) subsetting the
data so that subgroups of participants with matched adaptation
levels could be compared.

Participants were instructed to make rapid 10-cm point-to-
point reaching movements while grasping the handle of a
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robotic manipulandum with the right hand as diagrammed in
Fig. 1A. Experiment 1 began with a 360-trial baseline period in
which no FF perturbation was present. Next, in the training
period, participants were randomly assigned to one of three
training schedules: AS, where the full FF was suddenly intro-
duced and continued for 15 trials; AL, where the FF was
suddenly introduced and continued for 160 trials; and GL,
where the FF was incrementally introduced (see METHODS) for
145 trials and remained at full strength for an additional 15
trials. Retention was then assessed in a 60-trial period that
followed training (Fig. 1C). This retention period consisted
entirely of error-clamp (EC) trials in which motor errors that
promote learning were essentially eliminated. Experiment 2
was identical to experiment 1, except that, during training, a
vFF was used rather than a pFF.

Note that throughout the present study, we operationally
defined the retention of motor memories as its ability to
withstand the passage of time and recurring memory retrievals
that take place during the retention period. In animal condi-
tioning studies, decay of adaptation from memory retrieval is
generally assessed during an extinction period, in which the
stimulus driving an adaptive response is no longer provided
(Cohen et al. 2004; Medina et al. 2002; Pavlov 1927). Analo-
gously, we used EC trials to assess memory stability during
extinction, but the EC also allowed us to essentially eliminate
the possibility for motor errors to systematically drive either
unlearning or further learning (see METHODS). Note that the use
of EC trials to study memory retention has been widely
adopted in many FF adaptation and visuomotor-rotation studies
(Huang and Shadmehr 2009; Joiner et al. 2013; Scheidt et al.
2000; Shmuelof et al. 2012; Smith et al. 2006).

Final adaptation levels and error sizes for each schedule
during the training period. All three training schedules resulted
in substantial levels of motor adaptation in both experiments 1
and 2 throughout the training and retention epochs as demon-
strated in Fig. 2. The level of adaptation was quantified based
on an adaptation coefficient (Joiner et al. 2013; Sing et al.
2009a; Sing and Smith 2010; Smith et al. 2006), which corre-
sponds to the coefficient for the linear regression between the
lateral force pattern that a participant produced on a particular
EC trial and the ideal compensatory force for that movement.
The final adaptation level was defined as the adaptation level
found on the last EC trial in the training period. In experiment
1, we found final adaptation values that were within 6% for all
three training schedules and not significantly different from
one another [F(2, 41) � 0.32, P � 0.73; ANOVA]. The final
adaptation levels were 0.73 � 0.049, 0.77 � 0.016, and 0.68 �
0.067 (means � SE) for the AL, GL, and AS schedules, re-
spectively (Fig. 2E). In experiment 2 (Fig. 2, H–J), where we
used a paradigm identical to experiment 1 except that the FF
perturbation was velocity dependent rather than position de-
pendent, the three training schedules led to final adaptation
values that were within 17% of each other (0.68 � 0.055,
0.72 � 0.051, and 0.55 � 0.50 for the AL, GL, and AS
schedules, respectively). However, here we found that there
was a slight significant difference among the training schedules
[F(2,23) � 3.4, P � 0.044; ANOVA]. Specifically, AS train-
ing resulted in a significantly lower adaptation amount than the
other schedules [t(14) � 1.82, P � 0.038; t(14) � 2.78, P �
0.004 for AL versus AS and GL versus AS, respectively;
2-tailed t tests]. Thus gradual and abrupt exposure rates led to

similar levels of final adaptation when training duration was
matched, and there were no significant differences between AL
and GL in both experiments 1 and 2. When we decreased the
training duration (15 versus 160 trials), final adaptation was
only mildly reduced, with the reduction being statistically
significant in experiment 2 but not in experiment 1.

Note that, as expected, abrupt training led to consistently
larger error sizes than gradual training. In both experiments 1
and 2, the largest errors observed in the AL group were two- to
threefold higher than those observed in the GL group [31.4 �
2.6° and 13.6 � 1.3° of directional error (see METHODS) for AL
and GL groups in experiment 1, and 29.8 � 3.9° and 11.9 �
2.1° for AL and GL groups in experiment 2]. This is in line
with the approximately two- to threefold increases in error size
observed for abrupt versus gradual training in several previous
studies (Criscimagna-Hemminger et al. 2010; Kluzik et al.
2008; Malfait and Ostry 2004; Wang et al. 2011).

Normalized retention analysis reveals that retention is in-
sensitive to exposure rate yet highly sensitive to training
duration. The final adaptation levels were similar across ex-
periments and training schedules; however, these levels were
not precisely matched across groups, and in one case (AS in
experiment 2) the differences from other groups were even
statistically significant. Because differences in the level of final
adaptation would propagate into differences in retention even if
the rates of decay were identical, raw measurements during the
retention period do not provide a clean measure of the ability
to retain motor memories formed during training. To obtain a
clean measure of retention that prevents this propagation, we
normalized the raw retention levels measured during the reten-
tion period by the final adaptation level. Specifically, we used
the adaptation coefficient (AC) measured on the last EC trial in
the training period for this normalization.

Figure 2E shows the raw decay curves measured during the
retention epoch for experiment 1, and Fig. 2F shows the
normalized decay curves. To assess how the training schedule
influenced retention, we first focused our analysis on the early
(trials 1–20) and late (trials 40–60) periods of the retention
epoch (Fig. 2, F and G). Throughout both the early and decay
periods, we detected significant differences between the train-
ing schedule groups [early period: F(2,41) � 6.7, P � 0.0032;
late period: F(2,41) � 6.02, P � 0.0053; ANOVA]. Interest-
ingly, we found that both long-duration training groups (AL
and GL) displayed nearly identical retention in the early part of
the retention period (Fig. 2, F and G); however, the short-
duration group displayed significantly less retention [57.3 �
4.3% and 55.6 � 4.4% for AL and GL, respectively, compared
with 35.8 � 3.7% for AS; t(26) � 15.4, P � 0.788 for AL
versus GL; t(26) � 3.76, P � 8.68 � 10�4 for AL versus AS;
t(26) � 3.32, P � 0.0026 for GL versus AS; 2-tailed t tests]. In
the late part of the retention period (Fig. 2, F and G), we also
found nearly identical retention for AL and GL groups but
reduced retention for AS [20.6 � 3.4% and 24.2 � 5% for AL
and GL, respectively, compared with 6.7 � 1.9% for AS;
t(26) � �0.595, P � 0.557 for AL versus GL; t(26) � 3.51,
P � 0.0016 for AL versus AS; t(26) � 3.24, P � 0.0032 for
GL versus AS; 2-tailed t tests].

Experiment 2 (vFF training) echoed the results from exper-
iment 1 (Fig. 2, H–J). We found significant differences
throughout the retention period [early period: F(2,23) � 17.4,
P � 3.52 � 10�5; late period: F(2,23) � 21.8, P � 7.47 �
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10�6; ANOVA]. With post hoc analysis, we found no differ-
ence between early or late retention for AL versus GL training
[early period: retention levels of 59.3 � 5.4% and 62.5 � 4.8%
for AL and GL, respectively; t(14) � �0.444, P � 0.66; late
period: 25.8 � 3.3% and 23.6 � 3.4% for AL and GL,
respectively; t(14) � 0.459, P � 0.65; 2-tailed t tests]. In

contrast, AS training led to reduced retention in both the
early and late periods of the retention block [early period:
37.6 � 3.29%; t(14) � 3.26, P � 0.0021 for AL versus AS;
t(14) � 4.02, P � 2.16 � 10�4 for GL versus AS; late period:
5.1 � 3.8%; t(14) � 4.11, P � 1.6 � 10�4 for AL versus AS;
t(14) � 3.64, P � 6.8 � 10�4 for GL versus AS; 2-tailed t
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Fig. 2. Time course of adaptation and retention for different exposure rates and training durations. A–D: population-averaged force profiles for each of the 3
training schedules (abrupt long, AL; gradual long, GL; and abrupt short, AS) and the robot-issued force pattern that participants learned to compensate for (thin
traces in each panel) measured during error-clamp (EC) trials. In each panel, we plotted both the early (thick dashed traces) and the late (thick solid traces)
population-averaged force patterns observed during both the training epoch (A and C) and retention period (B and D) for each training schedule (see METHODS).
A and B display data related to experiment 1 (position-dependent force-field, pFF), and C and D display data related to experiment 2 (velocity-dependent
force-field, vFF). Results suggest a stronger effect of training duration (AS versus AL) on retention compared with exposure rate (AL versus GL; see B and D)
despite similar force patterns observed at the end of training (thick solid traces in A and C). E and H: learning and decay curves based on population-averaged
adaptation coefficients (see METHODS) for each training schedule. E–G show data from experiment 1, pFF adaption, and H–J show data from experiment 2, vFF
adaptation. Results show similar final adaptation levels for all 3 schedules. F and I: normalized retention curves during the retention period. The raw retention
levels (gray regions in E and H) were scaled relative to final adaptation levels and thus represent %retention. Abrupt and gradual schedules display nearly identical
retention when training duration is matched (AL versus GL); however, short training led to markedly reduced retention compared with long (AS versus AL).
Note that trial numbers indicated on the x-axis correspond to the trial numbers for the AL and GL conditions to facilitate comparison between the AL, GL, and
AS conditions. G and J, left: %retention for the early (trials 1–20; cyan regions in F and I) and late (trials 41–60; yellow regions in F and I) retention periods.
Retention was significantly increased for long-duration training (AL and GL) compared with short-duration training (AS) for both early and late periods in
experiments 1 and 2. However, retention was essentially identical for gradual compared with abrupt training when duration was matched (GL versus AL). Right:
time constants estimated for the retention of adaptation. Results echo those for the retention level analyses at left. Shaded regions and error bars represent SE.
**P � 0.01, significant differences. NS, not significant; wrt, With respect to.
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tests]. In both experiments 1 and 2, long-duration training
displayed retention during the late period that was at least four
times larger than during short-duration training, but late-period
retention was nearly identical when the training schedule only
differed in exposure rate. In summary, this analysis suggests
that for both pFF and vFF adaptation, the exposure rate has
little effect on the retention of adaptation (AL versus GL).
In contrast, training schedules with longer durations lead to
significantly improved retention (AL versus AS and GL
versus AS).

We next examined whether the time constants associated
with the decay of adaptation during the retention period
varied depending on the training schedule. In particular, we
estimated the exponential time constants for decay for each
individual by fitting the entire set of the retention period
data with a single exponential plus offset (see METHODS). The
time constants determined from this fitting procedure are
presented in Fig. 2, G and J, right, for experiments 1 and 2,
respectively. In experiment 1, we found time constants of
11.2 � 1.89, 9.9 � 1.65, and 6.5 � 0.95 trials for AL, GL,
and AS, respectively. In experiment 2, we found time
constants of 10.7 � 1.4, 11.9 � 1.90, and 6.78 � 1.05 trials
for AL, GL, and AS, respectively. We found a significant
difference in estimated time constants between the training
schedules [experiment 1: F(2,41) � 16.6, P � 6.53 � 10�6;
experiment 2: F(2,23) � 10.9, P � 0.0006; ANOVA]. How-
ever, we specifically found that exposure rate has no effect
on the time constants when training duration is matched
[t(26) � �0.477, P � 0.64; t(14) � �0.54, P � 0.59 for
AL versus GL in experiments 1 and 2, respectively; 2-tailed
t tests]. In contrast, decreased training duration for AS
resulted in time constants for decay during the retention
period that were reduced by 34 – 42% in experiment 1 and by
37– 43% in experiment 2, indicating that retention decays
more rapidly than for long-duration training groups [exper-
iment 1: t(26) � 7.95, P � 1.9 � 10�9; t(26) � 9.72, P �
1.7 � 10�10 for AL versus AS and GL versus AS, respectively;
experiment 2: t(14) � 2.93, P � 0.0052; t(14) � 3.98, P �
2.42 � 10�4 for AL versus AS and GL versus AS, respectively;
2-tailed t tests]. These findings echo the results from the early and
late period analysis; together, they demonstrate that when differ-
ences in final adaptation are accounted for by normalizing the raw
retention data, there is little effect of gradual versus abrupt
exposure rates if training duration is matched. In contrast, in-
creased training duration leads to significantly improved retention
measured in either early or late retention periods or by a time
constant analysis based on data from the entire retention period for
both vFF and pFF training.

Matched-adaptation analysis shows that retention is insen-
sitive to exposure rate yet highly sensitive to training duration.
The normalized retention analysis presented in Fig. 2, F and G,
and Fig. 2, I and J, takes into account the differences in final
learning levels between individuals (and thus between groups)
by measuring retention relative to final learning. However, it is
possible that higher levels of learning might lead to dispropor-
tionately high levels of retention, making the normalization
imperfect. To address this possibility, we devised a second
method for controlling final adaptation that would not be
affected by a potential nonlinear scaling between final adapta-
tion and retention. Using this method, we attempted to pre-
cisely match the final adaptation levels between training sched-

ules in experiments 1 and 2 by selecting a subset of participants
from each group (AL, GL, and AS) in each experiment that
could be almost identically matched in terms of final learning
across groups. We did this matching separately for each group
comparison (AL versus GL, AL versus AS, and GL versus AS)
in experiment 1 and for each group comparison in experiment
2. In particular, we found that the subgroups could be matched
to the extent that the differences in final adaptation were
consistently less than 1%; note that here final adaptation is
defined as the adaptation measured on the last EC trial during
training. We found that for pFF training, the adaptation-
matched AL and GL subgroups contained 13 and 12 partici-
pants, respectively. These subgroups displayed retention levels
during the early period (trials 1–20) that were nearly equal to
one another [59 � 5.1% and 63 � 4.4%, respectively;
t(23) � 0.146, P � 0.88 for AL versus GL; 2-tailed t test], in
line with the findings from the normalized retention analysis
showing that exposure rate had little effect on retention. In
contrast, the adaptation-matched AS and AL subgroups, which
contained 12 and 13 participants, respectively, displayed sig-
nificantly different levels of retention during the early period,
with long-duration training leading to higher retention [reten-
tion amounts of 55 � 4.6% and 34.5 � 4% for the adaptation-
matched AL and AS subgroups, respectively; t(23) � 3.45,
P � 0.0022; 2-tailed t test]. The adaptation-matched GL and
AS subgroups contained 12 and 11 participants, respectively,
and we observed retention patterns that mirrored those of the
AL and AS subgroups [retention levels of 54 � 5% and 38 �
5% for the adaptation-matched GL and AS subgroups, respec-
tively; t(21) � 2.32, P � 0.0034; 2-tailed t test]. During the
late period (trials 41–60), AL and GL subgroups continued to
display retention levels that were nearly identical to one an-
other, whereas the AS subgroups led to substantially smaller
retention compared with the AL and GL subgroups [t(23) �
�0.502, P � 0.62; t(23) � 3.27, P � 0.0066; t(21) � 2.62, P �
0.016 for AL versus GL, AL versus AS, and GL versus AS,
respectively; 2-tailed t tests]. The time constant analysis based on
exponential fitting of each individual’s decay curve (trials 1–60)
also demonstrated that short-duration training led to a significantly
smaller rate of decay in these adaptation-matched subgroups
[t(23) � �2.32, P � 0.014; t(21) � 2.46, P � 0.011 for AL
versus AS and GL versus AS, respectively; 2-tailed t tests].
However, we found no evidence for an effect of exposure rate on
these time constants [t(22) � 1.14, P � 0.26 for AL versus GL;
2-tailed t test].

We repeated the adaptation-matched analysis for experiment
2 and found that it led to the same pattern of results we found
after matching adaptation in experiment 1. During the early
period, the AL and GL subgroups (n � 8 and n � 7, respec-
tively) displayed retention levels of 59 � 5% and 63 � 4.4%,
respectively [t(13) � �0.607, P � 0.55; 2-tailed t test], the AL
and AS subgroups (n � 4 and n � 6, respectively) showed
retention amounts of 64 � 4.1% and 39 � 4.7%, respectively
[t(8) � 5.06, P � 0.0019; 2-tailed t test], and the GL and AS
subgroups (n � 4 and n � 5, respectively) showed retention
levels of 62.6 � 5% and 38 � 3%, respectively [t(7) � 3.78,
P � 0.0138; 2-tailed t test]. Late-period retention continued to
indicate no significant difference between the long-duration
subgroups but significantly reduced retention for short-duration
subgroups [t(13) � 0.362, P � 0.72; t(8) � 4.53, P � 0.0038;
t(7) � 3.36, P � 0.024 for AL versus GL, AL versus AS, and
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GL versus AS, respectively; 2-tailed t tests]. Correspondingly,
the time constants we found supported the notion that training
duration significantly increases retention, whereas exposure
rate has little effect [t(13) � 0.563, P � 0.58; t(8) � 2.72, P �
0.017; t(7) � 2.72, P � 0.013 for AL versus GL, AL versus
AS, and GL versus AS, respectively; 2-tailed t tests]. Taken
together, these results mirror the findings of the normalization-
based retention analysis. That is, we found retention to be
almost equal for abrupt and gradual exposure rates when both
the training duration and the final learning levels were con-
trolled for. In contrast, long-duration training led to greater
retention compared with short-duration training when both the
exposure rate and final learning levels were controlled for.
Thus the finding that long- and short-duration training led to
different amounts of retention but that gradual and abrupt
exposure rates resulted in essentially identical retention held
for both pFF and vFF adaptations and for both methods of
controlling the final learning level.

A multirate model of motor learning predicts the experimen-
tal findings. We next attempted to determine whether a com-
putational model of motor adaptation could explain the pattern
of results we observed. In particular, to explain why training
duration might have a far greater effect on retention than
exposure rate, we examined a model in which the interaction
between two adaptive processes with different timescales un-
derlies motor adaptation (Joiner and Smith 2008; Sing and
Smith 2010; Smith et al. 2006). In this model, a fast learning
process quickly reacts to error but has poor retention, whereas
a slow learning process reacts slowly to error but has strong
retention. There is clear evidence that the slow process is what
primarily leads to both short- and long-term retention, since
fast-process adaptation decays quite rapidly (Joiner and Smith
2008; Sing et al. 2009b). Therefore, we hypothesized that the
similarities and differences between slow-process adaptation
for abrupt versus gradual exposure rates and for long- versus
short-duration training would explain the pattern of retention
we observed experimentally.

We began by estimating the parameters of this model for
pFF and vFF adaptation in the current data set. We then ran
simulations of different training durations and different expo-
sure rates to determine whether the differences in final adap-
tation levels for slow-process learning might explain our ex-
perimental findings. We estimated the parameters of the model
separately for the experiment 1 (pFF adaptation) and experi-
ment 2 (vFF adaptation) data. In both cases, we used only the
training period data from all three training schedules (AS, AL,
and GL) so that the fitting procedure had no access to the
retention period data. Thus both the pFF- and vFF-based
models make unfettered predictions for retention for all train-
ing schedules, leading to a total of six predictions for
retention data to which the models were not fit. For the pFF
data in experiment 1, the estimated model parameters were
As � 0.9886, Bs � 0.0199, Af � 0.8337, and Bf � 0.2825.
For the vFF data in experiment 2, the estimated model
parameters were As � 0.9919, Bs � 0.0287, Af � 0.7905,
and Bf � 0.2322. The model simulations for slow process,
fast process, and overall adaptation, based on both the pFF
and vFF parameter estimates, are shown in Fig. 3, A–C, for
the three training schedules.

We first sought to determine whether the simulations of the
two-state model presented in Fig. 3, A–C, could predict the

experimentally observed pattern of retention for the training
schedules we studied, to assess the validity of this model.
Because the model parameters were estimated using only the
training period data, the models make specific predictions for
retention for the three vFF and three pFF training conditions:
AL, GL, and AS. More specifically, we compared the experi-
mental data and model predictions for the early- and late-
period retention as defined in Fig. 2, G and J, for all three
training schedules in pFF and vFF environments. This com-
parison is shown for both the pFF (Fig. 3D) and vFF (Fig. 3E)
data sets. We found that both the pFF- and vFF-based versions
of the model predict marked differences in retention between
long- and short-duration training, but only subtle differences in
retention between abrupt versus gradual training. Specifically,
we found that the models predict that the difference in early
normalized retention between long- and short-duration training
is severalfold larger than the difference between abrupt and
gradual training [pFF: 57 � 3.66%, 55 � 2.84%, and 38 �
2.27% for AL, GL, and AS, respectively; t(26) � 3.08, P �
0.0048 for AL versus AS; t(26) � 4.68, P � 5 � 10�5 for GL
versus AS; t(26) � 0.43, P � 0.67 for AL versus GL; vFF:
61 � 3.6%, 56 � 2.9%, and 27 � 2.7% for AL, GL, and AS,
respectively; t(14) � 7.57, P � 1 � 10�5 for AL versus AS;
t(14) � 7.32, P � 4 � 10�4 for GL versus AS; t(14) � �1.08,
P � 0.2975 for AL versus GL]. We found that the stronger
effect of training duration compared with exposure rate pre-
dicted by the models during the early period was also main-
tained during the late period [pFF: 27 � 5.65%, 24 � 4.13%,
and 9 � 1.45% for AL, GL, and AS, respectively; t(26) �
�4.41, P � 2 � 10�4 for AL versus AS; t(26) � 3.43, P �
0.002 for GL versus AS; t(26) � 0.43, P � 0.67 for AL versus
GL; vFF: 40 � 6.87%, 35 � 5.32%, and 13 � 2.03% for AL,
GL, and AS, respectively; t(14) � 3.77, P � 0.0021 for AL
versus AS; t(14) � 3.86, P � 0.0007 for GL versus AS;
t(14) � �0.58, P � 0.575 for AL versus GL]. These predic-
tions echo our primary experimental finding that short-duration
training leads to substantially reduced retention compared with
long-duration training but that gradual and abrupt training lead
to essentially identical retention levels. Thus the two-rate
models of pFF and vFF adaptation both successfully predict the
pattern of retention seen in the experimental data.

Differences in the amount of slow-process learning accrued
during training predict the effects of exposure rate and training
duration on retention. The construction of a quantitative model
allows for analysis of the internal dynamics that account for
learning phenomena. In particular, analysis of the multirate
model that we simulated allows us to go beyond the relation-
ship between the experimentally observed learning and forget-
ting curves and examine the slow and fast adaptive processes
that underlie the adaptive response. Thus we examined, in the
model, how the exposure rate and training duration determine the
extent to which the slow and fast learning processes contribute to
the final adaptation accrued before retention was tested for the
training schedules we studied. Examination of the modeling
results for the AL and GL training schedules reveals that although
these schedules lead to learning curves during the training period
that have markedly different shapes, they still result in very
similar levels of final adaptation not only for overall learning but
also for the fast and slow processes, as well. Specifically, overall
adaptation was within 4% for GL and AL schedules in both pFF-
and vFF-based simulations (pFF-based simulations: 0.76 and 0.75
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for AL and GL; vFF-based simulations: 0.81 and 0.78 for AL and
GL). Similarly, slow-process adaptation was within 12% in both
pFF- and vFF-based simulations, and fast-process adaptation was
within 13%. Correspondingly, as reported above, these simula-
tions predicted very similar retention levels for AL and GL
training for both types of FFs in both the early and late retention
periods (Fig. 3, D and E). The similarity between the retention
levels observed, both early and late, with AL and GL training
results from the similarity between the amount of slow-process
adaptation accrued by the end of the training, because the mod-
eling shows little persistence of fast-process adaptation in the
retention period.

The critical importance of the amount of slow-process learn-
ing at the end of the training period is also supported by
comparison of the modeling results for the AS and AL training
schedules (Fig. 3, A and C). Although the simulations for AS
and AL learning led to similar overall adaptation levels by the
end of the training period, the way that this overall adaptation
was composed, in terms of slow- and fast-process contribu-
tions, was very different. With the use of both sets of param-
eters (pFF and vFF data), the slow-process level at the end of
the training period in the AL training schedule was nearly three
times as large as in the AS schedule. In contrast, the fast-
process level at the end of the training period in the AS training
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schedule was 50–100% higher than that in the AL schedule. In
accordance with the difference in slow-process levels at the
end of the training period, short-duration training (AS) consis-
tently led to decreased retention, both early and late, compared
with long-duration training (AL), despite higher fast-process
learning for AS during the training period (Fig. 3, D and E). In
summary, our modeling results show very similar levels of
slow-process adaptation for gradual and abrupt long-duration
training (GL and AL) resulting in similar levels of retention,
whereas short-duration training leads to markedly reduced
levels of slow-process adaptation resulting in reduced levels of
retention. Taken together, these observations provide a possi-
ble mechanistic explanation for why the retention of adaptation
is improved for long-duration training versus short-duration
training but largely unaffected by exposure rate.

We next used the two-state model to simulate adaptation in
gradual and abrupt training schedules over a large span of
training durations to gauge the effects of exposure rate at
different training durations. In particular, we used the two-state
model to analyze the fraction of learning that results from the
slow process (i.e., slow-process contribution) not only for our
own experimental conditions but also for every possible train-
ing duration between 1 and 5,000 trials (see METHODS). We
compared abrupt training with logarithmically ramped gradual
training (employed in the current study) and linearly ramped
gradual training. Note that both gradual training paradigms
incorporated 15-trial hold periods at the full perturbation level
at the end of the training period, because hold periods are used
in both the current experiments and a vast majority of gradual
training studies we are aware of (Criscimagna-Hemminger et
al. 2010; Gibo et al. 2013; Huang and Shadmehr 2009; Joiner
et al. 2013; Klassen et al. 2005; Kluzik et al. 2008; Malfait and
Ostry 2004; Wang et al. 2011; Wong and Shelhamer 2011).
Figure 3 shows the results of these simulations for the param-
eters derived both from our pFF data (Fig. 3F) and from our
vFF data (Fig. 3G). To facilitate comparisons between different
cases, the results shown in Fig. 3 express final slow-process
adaptation as a fraction of that achieved on the 5,000th abrupt
training trial, where this adaptation was maximal. Note that

because the gradual conditions included hold periods, these
conditions are plotted from 16th trial point onward, whereas
the abrupt condition is plotted from the 1st trial point. Simu-
lations of the abrupt condition from the 1st to 14th trial point
can thus be interpreted as abrupt-short conditions with fewer
training trials than the abrupt-short condition we experimen-
tally tested (15 trials).

These simulations reveal that slow-process contribution is
substantially more sensitive to training duration than exposure
rate. Note that we used logarithmic scaling for the trial number
axis of these plots, and the sigmoidal shape present is because
of this scaling; i.e., on a linearly scaled representation, the
slope of the plotted relationship is instead monotonically de-
creasing. Also note that the black arrows illustrate the effects
of training duration (AS versus AL) and exposure rate (AL
versus GL). Both pFF- and vFF-based modeling predict a
strong effect of training duration but a weak effect of exposure
rate, echoing our experimental findings (note the difference in
black arrow sizes; pFF-based modeling led to differences of
183.7% and 12.6% in slow-process contribution for AS versus
AL and AL versus GL conditions, respectively, whereas vFF-
based modeling led to differences of 138.8% and 8.9%). When
any two training schedules are compared, the effect of training
duration will clearly depend on the specific number of training
trials chosen for long- and short-duration training. However,
over the entire range of training trials, the simulations predict
an ~86% improvement in slow-process contribution. In con-
trast, exposure rate leads to a substantially smaller maximal
improvement of ~19% in slow-process contribution, and this
effect declines with further training trials (pFF-based: �10%
slow-process contribution is found after 328 trials for both
logarithmic and linear conditions; vFF-based: �10% slow-
process contribution is found after 224 trials for both logarith-
mic and linear conditions).

Interestingly, the simulations predict that the sudden condi-
tion consistently leads to greater slow-process contribution
compared with either gradual condition, suggesting that grad-
ual training might lead to lower retention compared with abrupt
training. Therefore, the two-state model predicts that differ-

Fig. 3. A model-based prediction of retention for different exposure rates and training durations. A–C: two-state model simulations based on position-dependent
(pFF) and velocity-dependent force-field (vFF) adaptation data for the abrupt long (AL; A), gradual long (GL; B), and abrupt short (AS; C) training schedules.
The models were fit solely to the training period data so that they could be used to predict retention. D and E: comparison of model predicted versus
experimentally measured normalized retention for AL, GL, and AS training schedules based on pFF and vFF data sets, respectively. Note that we compared the
training schedules during both the early (left) and late (right) periods of the retention epoch. Both the pFF- and vFF-based versions of the model predict little
difference in retention between AL and GL, but they predict large differences in retention between AL and AS. These predictions echo the main experimental
finding that training duration has a strong effect on retention, whereas exposure rate has a weak effect. F and G: simulations based on pFF and vFF adaptation,
respectively. We characterized the retention predicted from a two-state multirate model for gradual and sudden exposure rates and for a wide range of training
durations. Because in such a model, the fast learning process would decay very rapidly during a retention period, we used the amount of slow-process learning
at the end of the training period as a proxy for retention. Specifically, we used the fraction of the final adaptation due to the slow learning process for the retention
proxy shown on the y-axes of these plots, because this normalizes the retention proxy by the amount of final adaptation analogous to the experimental results
based on normalized retention shown in Fig. 2. The results shown summarize the findings from ~30,000 model simulations based on the combination of 2 FFs,
3 exposure rate conditions, and training durations spanning up to 5,000 trials in the training period. Note that we simulated 2 different gradual training schedules:
a logarithmically ramped schedule, such as that used in experiments 1 and 2, and a linearly ramped schedule. Also note that we included a 15-trial hold period
at the end of training in both gradual conditions, and so these conditions are plotted from the 16th trial point onward, whereas the abrupt condition is plotted
from the 1st trial point. Simulations of the abrupt condition from the 1st to 14th trial point can thus be interpreted as abrupt-short conditions with fewer training
trials than the abrupt-short condition we experimentally tested (15 trials). The pFF- and vFF-based simulations show very similar results, as do both gradual
schedules. Colored dots denote the conditions corresponding to the training schedules used in experiments 1 and 2, and black arrows illustrate the effects of
training duration (AS versus AL) and exposure rate (AL versus GL) based on these conditions. For the experimental conditions, the simulations predict a percent
difference of �13% between AL and GL conditions, in contrast to a difference �138% between AS and AL training. This is in line with the findings from
experiments 1 and 2 demonstrating that exposure rate has little effect on retention but that training duration has a dramatic effect. Note that differences between
gradual and abrupt training are �20% at all training durations and are always negative, meaning that these models consistently predict only small differences
between gradual and abrupt training and that gradual training would lead to slightly reduced retention compared with abrupt across all training durations. Error
bars are SE. **P � 0.01, significant difference. wrt, With respect to.
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ences in exposure rates, and accordingly error size, cannot
provide an explanation for studies reporting retention advan-
tages for gradual training (Huang and Shadmehr 2009; Klassen
et al. 2005). The discrepancy between gradual and abrupt
exposure rates may arise because with abrupt exposure rates,
the perturbation is at full level for the entirety of the training
period, whereas gradual training only leads to complete expo-
sure of the perturbation toward the end of training. However,
the effect is small because gradual training schedules include a
number of trials at the end of training during which the
perturbation is at full strength. In summary, although our
simulation results should not be expected to fully account for
how retention can be predicted under all training schedules, we
find that a simple, if imperfect, model can capture the essence
of our experimental findings. The discrepancy between the AS
versus AL and AL versus GL conditions found in our simula-
tions, as well as the results from experiments 1 and 2, provide
demonstrable evidence that error size has little impact on
retention.

As detailed in METHODS, the parameters for the two-state
learning model we used in the simulations were obtained by
simultaneously fitting the learning curves of the mean data for
all three experiments (AL, GL, and AS). However, the mod-
eling results presented in Fig. 3 were not dependent on the
details of this fitting procedure. We obtained very similar
simulation results when we instead determined the model
parameters from fitting our data sets individually or from
averaging the parameters obtained from individual data set fits.
In particular, we compared the results from obtaining model
parameters from fitting the AL data alone, from fitting the GL
data alone, and from averaging the parameters from these two
individual fits (we did not use parameters obtained from fitting
AS alone because the short time course of the AS learning
curves does not allow the slow-process coefficients to be
determined with sufficient confidence). In both cases we ob-
tained results that were qualitatively similar to the results
obtained when all data sets were used. After fitting the model
onto the data from the AL group alone, we found that training
duration has a marked impact on slow-process contribution and
that exposure rate has little impact (pFF-based: slow-process
contributions of 98.5%, 89.3%, and 40% for AL, GL, and AS,
respectively; vFF-based: slow-process contributions of 91.6%,
80.4%, and 29.2% for AL, GL, and AS, respectively). Fitting
the model onto the data from the GL group alone led to a
similar pattern of results (pFF-based: slow-process contribu-
tions of 94.3%, 85.8%, and 35.8% for AL, GL, and AS,
respectively; vFF-based: slow-process contributions of 98.4%,
91.4%, and 44% for AL, GL, and AS, respectively). Last, we
still found that training duration has a much larger effect on
slow-process contribution compared with exposure rate when
the parameters obtained from fitting the AL data alone and the
parameters obtained from fitting GL data alone were averaged
(pFF-based: slow-process contributions of 96.9%, 88.1%, and
37.3% for AL, GL, and AS, respectively; vFF-based: slow-
process contributions of 96.3%, 87.4%, and 37.1% for AL, GL,
and AS, respectively). For both the pFF- and vFF-based sim-
ulations, the training duration led to an increase in slow-
process contribution of �87%, whereas the exposure rate only
led to an increase of �17% across all training durations.

DISCUSSION

In the current study we compared the retention of motor
adaptation for different training durations and exposure rates
and examined these effects for two different types of force-
field (FF) perturbations. The rationale for examining two
different FF perturbations was to assess the generality of our
findings. That is, we wanted to see if there were consistent
effects of training duration and exposure rate for different types
of physical dynamics. When we controlled for both the final
amount of adaptation achieved during training and the duration
of the training period, we found that gradual and abrupt
training led to essentially identical retention. This held for both
position-dependent and velocity-dependent FF adaptation (pFF
and vFF, respectively) and for two different methods of con-
trolling the final adaptation: 1) normalizing the raw retention
data by the amount of final learning and 2) subsetting the
experimental groups so that final adaptation levels could be
matched within 1%. In contrast, we found that training duration
had a profound effect on retention. This also held for both pFF
and vFF adaptation and for the two different methods of
controlling the final adaptation.

We then performed a secondary analysis and examined a
two-state model of motor adaptation to understand why the
retention of motor learning is more strongly influenced by
training duration rather than exposure rate or error size. The
model was fit only to the adaptation period data and therefore
was used to predict retention. Although we cannot use this
model to precisely predict retention for all possible training
schedules, we considered that the model might provide insight
into our results given that it has been used previously to explain
long-term retention behavior in a FF adaptation paradigm
(Joiner and Smith 2008). We found that slow-process learning,
which predicts retention because fast-process learning rapidly
decays away, was highly sensitive to training duration but only
mildly sensitive to exposure rate (training duration led to a
�85% increase in slow-process learning for the abrupt condi-
tion and for both types of gradual conditions studied, whereas
exposure rate led to a �20% increase). This echoes our
experimental results suggesting that the effects of training
duration and exposure rate can be explained by a simple
two-rate model of adaptation. Thus we find little evidence for
improvements in retention associated with gradual training
compared with abrupt, yet we find that retention of adaptation
can be dramatically improved if training duration is increased.

Previous work examining the effects of the training schedule
on motor learning. A number of previous studies have com-
pared the retention following gradual and abrupt training (Cris-
cimagna-Hemminger et al. 2010; Huang and Shadmehr 2009;
Ingram et al. 2000; Kagerer et al. 1997; Klassen et al. 2005;
Kluzik et al. 2008; Michel et al. 2007; Wong and Shelhamer
2011), and two of these used the same FF adaptation paradigm
that we employed (Huang and Shadmehr 2009; Klassen et al.
2005). Both these studies were also based on point-to-point
reaching movements perturbed by velocity-dependent curl FFs
like the vFF we used in experiment 2. Given these similarities,
it may seem surprising that our findings are at odds with those
of these previous studies. In particular, both studies reported
that a gradual training schedule (with linear ramping) leads to
increased retention compared with an abrupt schedule, whereas
we found no advantage. Unfortunately, there are methodolog-
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ical and analytical issues with both previous studies that call
their claims into question. Both studies attempted to experi-
mentally match the level of learning achieved in each training
schedule, but they did so by increasing the training duration for
the gradual training groups. This training duration mismatch
would lead to greater retention for the gradual groups even if
gradual training per se had no effect, suggesting that the
findings resulted from a conflation of exposure rate and train-
ing duration.

In the Huang and Shadmehr (2009) study, gradual training
was more than twice as long as abrupt training (50 versus 20
trials). This is in line with the idea that the experimental finding
was due to a mismatch in training duration rather than a
difference in exposure rate. In addition, the simulations we
represent in Fig. 3, F and G, may provide an explanation for
this finding. Specifically, the simulations based on our vFF data
predict that a gradual group with 50 training trials would lead
to slow-process contribution that is 28.5% higher compared
with an abrupt group with 20 training trials (48.4% and 62.2%
predicted slow-process contribution for abrupt and gradual
training, respectively). This suggests that the data from the
Huang and Shadmehr study are in agreement with our own
results.

One experimental condition in the Huang and Shadmehr
(2009) study (abrupt exposure for 50 training trials) provided a
control for training duration. However, inspection of the data
suggests that the duration-matched gradual and abrupt training
groups displayed similar levels of retention, and, oddly, the
authors failed to test whether a significant difference was
present between the amount of retention that was observed in
these groups. Instead, the authors reported a significant inter-
action between the effects of training schedule and epoch and
argued that the gradual training schedule thus led to a slower
rate of decay. Unfortunately, the authors failed to account for
differences in final adaptation between the two training sched-
ules, and the effect was relatively weak (P � 0.039). There-
fore, because gradual training, as expected, led to lower final
adaptation, a significant interaction is exactly what should be
expected with nonnormalized retention data if both groups
displayed the same relative exponential decay, because lower
adaptation would lead to less decay. Thus the findings are
entirely consistent with identical normalized decay and reten-
tion for gradual and abrupt groups, underscoring the impor-
tance of the normalization we used when examining retention.

Klassen et al. (2005) also compared abrupt and gradual
training, but in this study the authors examined long-term
retention after 24 h. In particular, the authors used a vFF task
where participants were instructed to move toward one of eight
potential targets. To control for the final level of adaptation, the
duration of gradual training was made greater than that for
abrupt training (280 versus 240 total trials), and retention on
day 2 was greater for the gradual condition. Thus this increased
retention might be due to an increased training duration rather
than the gradual nature of the training (e.g., smaller error
sizes). It also should be noted that the authors assessed reten-
tion by averaging the amount of relearning during the second
and third blocks on day 2. This retention metric conflates true
retention, the memory that would remain at the beginning of
the second day, with savings, which depends on the rate of
relearning during the day 2 training. In addition, the authors
performed a second experiment based on visuomotor rotation

(VMR) learning and found no effect of gradual versus abrupt
training.

In summary, neither Huang and Shadmehr (2009) nor Klas-
sen et al. (2005) simultaneously controlled the training dura-
tion and level of final adaptation before measuring retention. In
the former study, the gradual training condition in the main
experiment included more than double the amount of training
than the abrupt condition, and when the amount of training was
matched in the control experiment, retention levels were not
directly compared across conditions, and differences in final
learning arose but were not accounted for. In the latter study,
only one of the two experiments was in line with the idea that
gradual training leads to improved retention, and in that ex-
periment, training duration was greater for gradual training and
retention was not assessed independently of savings. Other
studies investigating how abrupt versus gradual training affects
retention matched the training duration but unfortunately left
the amount of learning uncontrolled (Ingram et al. 2000;
Kagerer et al. 1997; Michel et al. 2007). These studies ana-
lyzed raw retention instead of retention relative to the amount
of learning, which the normalization procedure we used deter-
mines. In addition to normalizing retention, we also matched
adaptation levels between abrupt and gradual training groups to
within 1% and consistently found no significant difference in
retention levels.

Effects of awareness and strategization associated with
gradual versus abrupt training. One of the ideas that has
motivated the proposition that gradual training may be advan-
tageous compared with abrupt training is that the gradual
introduction of a perturbation can lead to small errors that
escape conscious detection. Thus participants would adapt
while unaware that a perturbation has been levied (Michel et al.
2007; Taylor et al. 2011; Wang et al. 2011). A lack of
awareness precludes explicit strategization, and thus a number
of studies have suggested that gradual training favors more
“natural” learning, meaning more predominantly implicit
learning, which might promote increased aftereffects and im-
proved retention (Hatada et al. 2006; Michel et al. 2007; Wong
and Shelhamer 2011). This line of thought seems quite reason-
able, and there is other evidence, independent of training
schedule manipulations, demonstrating that increased implicit
and decreased strategic learning can lead to stronger afteref-
fects and improved retention (Fernández-Ruiz et al. 2000;
Richter et al. 2002; Weiner et al. 1983). However, this general
argument depends on the assumption that strategic learning can
act as a substitute for implicit learning in improving motor
performance so that lower levels of implicit learning are called
for. Clearly, the extent to which explicit strategies can effec-
tively substitute for implicit adaptation varies widely from one
motor task to another. For visuomotor learning, including
VMR and saccade adaptation, explicit strategies can be very
effective in substituting for implicit learning (in terms of
performance) because high levels of both directional and end-
point accuracy can be obtained by strategically choosing an
aim point that is displaced from the target location (Herman et
al. 2009; Mazzoni and Krakauer 2006; Taylor et al. 2014).
However, effective adaptation to a FF requires the production
of a novel motion-dependent force pattern, which must be
learned incrementally. Accordingly, several studies that at-
tempted to associate the learning of different FFs with distinct
cognitive cues have failed to yield substantial cue-dependent
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adaptation. In contrast, motor cues such as motion direction,
limb position, and even the geometry of a preceding motion or
of the motion of another limb can readily elicit robust cue-
dependent adaptation (Gupta and Ashe 2007; Howard et al.
2012, 2013; Nozaki et al. 2006; Yokoi et al. 2011). Thus the
available evidence suggests that FF learning is unlikely to be
amenable to cognitive strategization. Therefore, the increased
awareness associated with sudden rather than gradual FF train-
ing may not promote increased strategy. Correspondingly, we
find little effect of gradual versus abrupt training when final
adaptation is controlled. In summary, our results suggest that
training schedules that inhibit the awareness of a perturbation
do not generally lead to improved retention compared with
training schedules that elicit greater conscious awareness.

Effects of gradual and abrupt training on cerebellum-depen-
dent motor adaptation. A key difference between gradual and
abrupt exposure rates is that they may lead to differences in
credit assignment for errors. The idea is that gradual training
results in small errors that would likely be assigned as due to
self-generated rather than environmental changes. However,
abrupt training results in large errors that would likely be
assigned to environmental rather than endogenous causes
(Berniker and Kording 2008; Schlerf et al. 2013). Accordingly,
several studies have suggested that the difference in error sizes
between gradual and abrupt training lead to differences in
credit assignment and engage distinct neural mechanisms
(Berniker and Kording 2008; Boyden et al. 2006; Criscimagna-
Hemminger et al. 2010; Robertson and Miall 1999). The
cerebellum is widely believed to be critical for error-driven
motor learning, including FF adaptation (Diedrichsen et al.
2005; Maschke et al. 2004; Smith and Shadmehr 2005), and
error size selectivity in cerebellar plasticity has been reported.
The error signals that drive learning in the cerebellum are
thought to be encoded by complex spikes, which drive neural
plasticity in the form of long-term depression (LTD) (Boyden
et al. 2006; Kitazawa et al. 1998). Interestingly, Soetedjo et al.
(2008) found that complex spike probability was higher for
small compared with large error sizes in saccade adaptation,
suggesting that the cerebellum may be primarily responsible
for learning from the small errors that arise from endogenous
sources. However, Boyden et al. (2006) found that retention of
vestibuloocular reflex adaptation was only dependent on cere-
bellar LTD when large error sizes were administered. Thus the
details of error size selectivity in the cerebellum remain
controversial.

Recently, Criscimagna-Hemminger et al. (2010) reported
that gradual training led to greater FF adaptation and retention
in patients with cerebellar degenerations, compared with
abrupt training. This might suggest that cerebellum-indepen-
dent learning mechanisms are responsible for learning from
small errors, which would imply that the cerebellum is specif-
ically tuned to learning from large error signals. However, a
subsequent study from the same authors pointed out that the
experimental design conflated exposure rate with FF direction
(CW versus CCW), found that cerebellar patients were biased
for improved adaptation in CCW versus CW FFs, and demon-
strated that there was little effect of gradual versus abrupt
training in an experimental design that balanced out FF direc-
tion in examining exposure rate (Gibo et al. 2013). This latter
finding is in agreement with another recent study that reported
no difference between gradual and abrupt VMR adaptation in

patients with cerebellar degeneration (Schlerf et al. 2013).
Together, these findings suggest that the distinction between
large and small errors may not be critical for understanding
how motor adaptation depends on cerebellar function.

However, recent work has suggested that the retention of
motor memories is critically dependent on the cerebellum.
Motor adaptation can be partitioned into a component that is
temporally labile with a time constant of ~20 s and a tempo-
rally stable component that persists for much longer; these
components map onto fast and slow learning processes for FF
adaptation, respectively (Sing et al. 2009b). A recent reanalysis
of several studies examining FF adaptation deficits in individ-
uals with cerebellar degeneration suggests that temporally
stable slow-process learning is specifically impaired by cere-
bellar damage (Hadjiosif et al. 2014). Taken together with the
current findings, this suggests that the increased retention due
to improvements in slow-process learning that accrue from
prolonged training durations are critically dependent on cere-
bellar function. This is somewhat at odds with the idea that the
cerebellum may specifically contribute to the rate of motor
adaptation rather than the retention of it, based on the effect of
cerebellar transcranial direct current stimulation (tDCS) on
VMR learning (Galea et al. 2011). However, a recent attempt
to replicate this result by the same author failed to find any
consistent effects of cerebellar tDCS (Jalali et al. 2017). More-
over, it has been shown that inhibitory (cathodal) stimulation
of the cerebellum during FF learning using tDCS impairs both
the initial learning rate and 24-h retention (Herzfeld et al.
2014).

Error augmentation. Given that error signals are known to
drive motor adaptation, several recent studies have sought to
promote increases in motor adaptation by increasing the size of
error signals. These studies have been motivated by the possi-
bility of increasing the rate of motor adaptation to facilitate
rehabilitation following neurological insults, and the idea has
been termed error augmentation. Interestingly, training with
larger errors via error augmentation is, at its essence, opposite
the idea of gradual training, which introduces a perturbation
incrementally to avoid large errors during training. Several
error augmentation studies have reported modest to large
increases in the rate of adaptation (Emken and Reinkensmeyer
2005; Rozario et al. 2009; Patton et al. 2006; Wei et al. 2005).
However, significant increases even in raw retention levels
have not been observed (Wei et al. 2005). The current findings
suggest that improved adaptation levels observed in these error
augmentation paradigms might be harnessed to improve reten-
tion if increased training durations were incorporated.
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